Find limx→0 f(x) and limx→1 f(x) where f(x)= {2x+3x≤03(x+1)x>0
Here f(x) = {2x+3x≤03(x+1)x>0
Now limx→0 f(x) = limx→0 2x+3=2×0+3 = 3
limx→0f(x)=limx→0 3(x+1) = 3 (1+1)
= 3 × 2 = 6.
Evaluate limx→0={|xx|,x≠00,x=0
f(x)={|x|x, if x≠00, if x=0
f(x)={x2sin1x,if x≠00,if x=0