Find limx→0 f(x) where f(x) = {x|x|x≠00x≠0
Here f(x) = {x|x|x≠00x≠0
L.H.L. = limx→0−f(x)=limx→0−x|x|
Put x=0 - h as x→0,h→0
∴limh→0−−h|−h|=limh→0−−h|−h|
= limh→0−−hh =- 1
R.H.L. = limx→0+f(x)=limx→0+x|x|
Put x=0 + h as x→x→0,h→0
∴limh→00+h|0+h|=limh→0h|h|=limh→0hh=1
Now L.H.L. ≠ R.H.L.
Thus limit does not exist at x =0.