Find limx→5, where f(x) = |x| - 5,
Here f(x) = |x| -5
L.H.L. = limx→5f(x)=limx→5−|x|−5
Put x = 5 - h as x→5,h→0
∴limh→0|5−h|−5=limh→0 5- h-5
= limh→0 (-h) = 0
R.H.L. = limx→5+f(x)=limx→5+ |x| -5
Put x = 5 + h as x→x→5,h→0
∴|5+h|h→0−5=limh→0 5+h-5
= limh→0 h=0
Now L.H.L. = R.H.L.
Thus limit exists at x = 5 and limh→0 f(x) = 0.