1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Matrix Definition and Representation
Find unit vec...
Question
Find unit vector perpendicular to the plane passing through the points
(
1
,
2
,
3
)
,
(
2
,
−
1
,
1
)
and
(
1
,
2
,
−
4
)
.
Open in App
Solution
Let the points be
A
(
1
,
2
,
3
)
,
B
(
2
,
−
1
,
1
)
,
C
(
1
,
2
,
−
4
)
Let,
x
1
=
1
,
y
1
=
2
,
z
1
=
3
x
2
=
2
,
y
2
=
−
1
,
z
2
=
1
x
3
=
1
,
y
3
=
2
,
z
3
=
−
4
Equation of plane passing through
A
,
B
and
C
is
∣
∣ ∣
∣
x
−
x
1
y
−
y
1
z
−
z
1
x
2
−
x
1
y
2
−
y
1
z
2
−
z
1
x
3
−
x
1
y
3
−
y
1
z
3
−
z
1
∣
∣ ∣
∣
=
0
∣
∣ ∣
∣
x
−
1
y
−
2
z
−
3
1
−
3
−
2
0
0
−
7
∣
∣ ∣
∣
=
0
Expanding along
R
3
⇒
−
7
[
−
3
(
x
−
1
)
−
(
y
−
2
)
]
=
0
⇒
3
x
+
y
−
5
=
0
Directional ratios of normal to the plane are
3
,
1
,
0
Therefore, let a vector perpendicular to the plane is
→
P
=
3
^
i
+
^
j
+
0
^
k
|
→
P
|
=
√
(
3
)
2
+
(
1
)
2
+
(
0
)
2
=
√
10
Hence a unit vector perpendicular to the plane
=
→
P
|
→
P
|
=
3
^
i
+
^
j
+
0
^
k
√
10
=
3
√
10
^
i
+
1
√
10
^
j
Suggest Corrections
0
Similar questions
Q.
Find a unit vector perpendicular to the plane determined by the points
P
(
1
,
−
1
,
2
)
,
Q
(
2
,
0
,
−
1
)
and
R
(
0
,
2
,
1
)
.
Q.
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).