wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find values of k if area of triangle is 4 square units and vertices are

(i) (k, 0), (4, 0), (0, 2) (ii) (−2, 0), (0, 4), (0, k)

Open in App
Solution

We know that the area of a triangle whose vertices are (x1, y1), (x2, y2), and

(x3, y3) is the absolute value of the determinant (Δ), where

It is given that the area of triangle is 4 square units.

∴Δ = ± 4.

(i) The area of the triangle with vertices (k, 0), (4, 0), (0, 2) is given by the relation,

Δ =

k + 4 = ± 4

When −k + 4 = − 4, k = 8.

When −k + 4 = 4, k = 0.

Hence, k = 0, 8.

(ii) The area of the triangle with vertices (−2, 0), (0, 4), (0, k) is given by the relation,

Δ =

k − 4 = ± 4

When k − 4 = − 4, k = 0.

When k − 4 = 4, k = 8.

Hence, k = 0, 8.


flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon