The correct option is
C ¯¯¯r=3¯i−¯j+2¯¯¯k+λ(−2¯i−3¯j−2¯¯¯k)the question has error
the eq of second line will be
→r=2^i+^j−3^k+μ(^i−2^j+4^k)
in place of
→r=2^i+^j−3^k+μ(^i−2^j+2^k)
required line is passing through A(3,-1,2)
position vector become
OA=→a=3^i−^j+2^k
So eq of line become
→r=→a+λ→b-------------(1)
required line is perpendicular to lines
→r=^i+^j−^k+λ(2^i−2^j+2^k)
normal vector of above line
→n1=2^i−2^j+2^k
and required line is also perpendicular to lines
→r=2^i+^j−3^k+μ(^i−2^j+4^k)
normal vector of above line
→n2=^i−2^j+4^k
line is perpendicular to both lines so
→b=→n1×→n2
→b=∣∣
∣
∣∣^i^j^k2−221−24∣∣
∣
∣∣
→b=^i(−8+4)−^j(8−2)+^k(−4+2)
→b=−4^i−6^j−2^k
putting a and b in eq (1)
So required line of eq
→r=3^i−^j+2^k+λ(−4^i−6^j−2^k)
→r=3^i−^j+2^k+2λ(−2^i−3^j−^k)
→r=3^i−^j+2^k+λ(−2^i−3^j−^k)
This is required eq