x2+2xysecθ+y2=0
Applying quadratic formula by assuming y as variable
y=−b±√b2−4ac2a
here a=1,b=2xsecθ,c=x2
y=−2xsecθ±√4x2sec2θ−4(1)(x2)2y=−2xsecθ±2x√sec2θ−12y=−xsecθ±xtanθy=−xsecθ+xtanθ,y=−xsecθ−xtanθ.......(i)y=−xcosθ±xsinθcosθy=−xcosθ+xsinθcosθ,y=−xcosθ−xsinθcosθ⇒(1−sinθ)x+cosθy=0,(1+sinθ)x+cosθy=0
So the eqaution of lines are (1−sinθ)x+cosθy=0 and (1+sinθ)x+cosθy=0
From (i)
Slope of first line m1=−secθ+tanθ
Slope of second line m2=−secθ−tanθ
Angle between two straight lines that is tanα=∣∣∣m1−m21+m1m2∣∣∣=∣∣∣(−secθ+tanθ)−(−secθ−tanθ)1+(−secθ+tanθ)(−secθ−tanθ)∣∣∣
tanα=∣∣∣−secθ+tanθ+secθ+tanθ1−(tanθ−secθ)(tanθ+secθ)∣∣∣=∣∣∣2tanθ1−(tan2θ−sec2θ)∣∣∣tanα=∣∣∣2tanθ1−(−1)∣∣∣=tanθ⇒α=tan−1(tanθ)=θ