Find, whether or not the first polynomial is a factor of the second :
(i) x+1, 2x2+5x+4
(ii) y−2, 3y3+5y2+5y+2
(iii) 4x2−5,4x4+7x2+15
(iv) 4−z, 3z2−13z+4
(v) 2a−3, 10a2−9a−5
(vi) 4y+1, 8y2−2y+1
x+1, 2x2+5x+4
2x2+5x+4=2x(x+1)+3x+4
=2x(x+1)+3(x+1)+1
∵ Remainder=1
∴ x+1 is not a factor of 2x2+5x+4
(ii) y−2, 3y2+5y2+5y+2
3y3+5y2+5y+2=3y2(y−2)+11y2+5y+2
=3y2(y−2)+11y(y−2)+27y+2
=3y2(y−2)+11y(y−2)+27(y−2)+56
∵ Remainder = 56
∴ y - 2 is not a factor of 3y2+5y2+5y+2
(iii) 4x2−5, 4x4+7x2+15
4x4+7x2+15=x2(4x2−5)+12x2+15
=x2(4x2−5)+3(4x2−5)+30
∵ Remainder = 30
∴ 4x2−5 is not a factor of 4x4+7x2+15
(iv) 4−z, 3z2−13z+4
3z2−13z+4=−3z(−z+4)−z+4
=−3z(−z+4)+1(−z+4)
∵ Remainder = 0
∴ 4−z or z+4 is a factor of 3z2−13z+4
(v) 2a−3, 10a2−9a−5
10a2−9a−5=5a(2a−3)+6a−5
=5a(2a−3)+3(2a−3)+4
∵ Remainder = 4
∴2a−3 is not a factor of 10a2−9a−5
(vi) 4y+1, 8y2−2y+1
(8y^2 - 2y + 1 = 2y (4y + 1) - 4y + 1)
=2y(4y+1)−1(4y+1)+2
∵ Remainder = 2
∴4y+1 is not a factor of 8y2−2y+1