(i) Given equation is 8x2+2x−3=0
On comparing with ax2+bx+c=0, we get:
a=8,b=2 and c=−3
∴ Discriminant, D=b2−4ac
=(2)2−4(8)(−3)
=4+96
=100>0
As D > 0, the equation 8x2+2x−3=0 has two distinct real roots.
We know that, Quadratic formula
x=−b±√b2−4ac2a
x=−2±√4+9616
=−2±√10016=−2±1016
⇒x=12 or x=−34
Hence, the roots of the equation
8x2+2x−3=0 are 12 and −34
(ii) Given equation is −2x2+3x+2=0
On comparing with ax2+bx+c=0, we get a=−2,b=3 and c=2
∴Discriminant, D=b2−4ac
=(3)2−4(−2)(2)
=9+4×4=9+16=25>0
As D > 0, the equation −2x2+3x+2=0 has two distinct real roots.
We know that, Quadratic formula is
x=−b±√b2−4ac2a
=−3±√(3)2−4(−2)(2)2(−2)=−3±√9+16−4
=−3±√25−4=−3±5−4
⇒x=−3+5−4=−12 or x=−3−5−4=−8−4=2
Hence, the roots of the equation
−2x2+3x+2=0 are (−12) and 2.
(iii) Given equation is 5x2−2x−10=0
On comparing with ax2+bx+c=0, we get: a=5,b=−2 and c=−10
Discriminant, D=b2−4ac
=(−2)2−4(5)(−10)
=4+200=204>0
As D > 0, the equation 5x2−2x−10=0 has two distinct real roots.
We know that, Quadratic formula is
x=−b±√b2−4ac2a
=−(−2)±√(−2)2−4(5)(−10)2×5
=2±√4+20010=2±√20410=2±√51×410
=2±2√5110=1±√515
⇒x=1+√515 or x=1−√515
Hence, the roots of the equation
5x2−2x−10=0 are 1+√515 and 1−√515
(iv) Given equation is 12x−3+1x−5=1,x≠32,5
⇒x−5+2x−3(2x−3)(x−5)=1
⇒3x−82x3−10x−3x+15=1
⇒3x−8=2x2−10x−3x+15
⇒2x2−16x+23=0
On comparing with ax2+bx+c=0 we get: a=2,b=−16 and c=23
We know that Discriminant (D)=b2−4ac
=(−16)2−4(2)(23)=256−184=72>0
As, D > 0 the equation 2x2−16x+23=0 has two distinct real roots.
We know that, Quadratic formula
x=−b±√b2−4ac2a
=−(−16)±√(−16)2−4(2)(23)2×2
=16±√256−1844
=16±√724=16±6√24=8±3√24
⇒x=8+3√22 or x=8−3√22
Hence, the roots of the equation
12x−3+1x−5=1 are 8+3√22 and 8−3√22
(v) Given equation x2+5√5x−70=0
On comparing with ax2+bx+c=0, we get: a=1,b=5√5 and c=−70
We know that Discriminant (D)=b2−4ac
=(5√5)2−4(1)(−70)=125+280
=405>0
As D > 0, the equation x2+5√5x−70=0 has two distinct real roots.
We know that, Quadratic formula
x=−b±√b2−4ac2a
=−5√5±√(5√5)2−4(1)(−70)2×1
=−5√5±√125+2802×1=−5√5±√4052
=−5√5±9√52
⇒x=−5√5+9√52 or x=−5√5−9√52
⇒x=4√52 or x=−14√52
Hence, the roots of the equation x2+5√5x−70=0 are 2√5 and −7√5.