To find whether the following series are convergent or divergent
1+3x+5x2+7x3+9x4+....
Here, an=(2n−1)xn−1
an−1=(2n−3)xn−2
Also,
anan−1=(2n−1)xn−1(2n−3)xn−2
anan−1=(2n−1)x(2n−3)
⇒limn→∞anan−1=limn→∞(2n−1)x(2n−3)
⇒limn→∞anan−1=limn→∞(2−1n)x(2−3n)
⇒limn→∞anan−1=x
Hence, if x<1, the series is convergent
If x>1, the series is divergent
If x=1, then the series is 1+3+5+7+9+...........
Therefore, it is divergent for x=1