Sn=1+Π∞i=13nxn(3n+4)Tn=3⋅6⋅9⋅.....⋅(3n)xn7⋅10⋅13⋅....⋅(3n+4)Tn+1=3⋅6⋅9⋅12⋅.....⋅(3n)(3n+3)xn+17⋅10⋅13⋅....⋅(3n+4)(3n+7)limn→∞Tn+1Tn=limn→∞(3n+3)(3n+7)xn+1xn=limn→∞(3+3/n3+7/n)x=x
For x>1,Π∞i=13nxn(3n+4) diverges
For x<1,Π∞i=13nxn(3n+4) converges
Hence, Sn=1+Π∞i=13nxn(3n+4) converges for x<1
Sn=1+Π∞i=13nxn(3n+4) diverges for x>1
For x=1, ratio test fails
Then we apply Raabe's Test
limn→∞[TnTn+1−1]n=limn→∞n[3n+73n+3−1]=limn→∞n[3n+7−3n+33n+3]=limn→∞4nn(3+3/n)=43
Since, limn→∞[TnTn+1−1]n=43>1
The series is convergent for x=1