wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find whether the following series are convergent or divergent:
1+37x+3.67.10x2+3.6.97.10.13x3+3.6.9.127.10.13.16x4+....

Open in App
Solution

Sn=1+Πi=13nxn(3n+4)Tn=369.....(3n)xn71013....(3n+4)Tn+1=36912.....(3n)(3n+3)xn+171013....(3n+4)(3n+7)limnTn+1Tn=limn(3n+3)(3n+7)xn+1xn=limn(3+3/n3+7/n)x=x
For x>1,Πi=13nxn(3n+4) diverges
For x<1,Πi=13nxn(3n+4) converges
Hence, Sn=1+Πi=13nxn(3n+4) converges for x<1
Sn=1+Πi=13nxn(3n+4) diverges for x>1
For x=1, ratio test fails
Then we apply Raabe's Test
limn[TnTn+11]n=limnn[3n+73n+31]=limnn[3n+73n+33n+3]=limn4nn(3+3/n)=43
Since, limn[TnTn+11]n=43>1
The series is convergent for x=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon