wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find whether the following series are convergent or divergent:
1+α.β1.γx+a(a+1)β(β+1)1.2.γ(γ+1)x2+a(a+1)(a+2)β(β+1)(β+)1.2.3.γ(γ+1)(γ+2)x3+...

Open in App
Solution

Let Tn be the general term of the series
Tn=α(α+1)β(β+1)...(α+(n1))(β+(n1))xn(n!)γ(γ+1)(γ+2)....(γ+(n1))Tn+1=α(α+1)β(β+1)...(α+(n1))(β+(n1))(α+n)(β+n)xn+1(n+1)!γ(γ+1)(γ+2)....(γ+(n1))(γ+n)limnTn+1Tn=limn(α+n)(β+n)(n!)x(n+1)!(γ+n)=n2(1+α/n)(1+β/n)xn2(1+1/n)(1+γ/n)=x
If x<1, the series is convergent
If x>1, the series is divergent

For x=1, ratio test fails
We apply Raabe's test
limnn[TnTn+11]=limnn[(γ+n)(n+1)(α+n)(β+n)1]=limnn[(1+γ)n+n2+γn2αβ(α+β)n(α+n)(β+n)].=limn(1+γαβ)n2+γnαβn(α+n)(β+n)=limn(1+γαβ)+γnαβn(1+αn)(1+βn)=(1+γαβ)
If
1+γαβ<1, the series is divergent
γαβ<0, the series is divergent
If
1+γαβ>1, the series is convergent
γαβ>0, the series is convergent

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon