Let Tn be the general term of the series
Tn=α(α+1)β(β+1)...(α+(n−1))(β+(n−1))xn(n!)γ(γ+1)(γ+2)....(γ+(n−1))Tn+1=α(α+1)β(β+1)...(α+(n−1))(β+(n−1))(α+n)(β+n)xn+1(n+1)!γ(γ+1)(γ+2)....(γ+(n−1))(γ+n)limn→∞Tn+1Tn=limn→∞(α+n)(β+n)(n!)x(n+1)!(γ+n)=n2(1+α/n)(1+β/n)xn2(1+1/n)(1+γ/n)=x
If x<1, the series is convergent
If x>1, the series is divergent
For x=1, ratio test fails
We apply Raabe's test
limn→∞n[TnTn+1−1]=limn→∞n[(γ+n)(n+1)(α+n)(β+n)−1]=limn→∞n[(1+γ)n+n2+γ−n2−αβ−(α+β)n(α+n)(β+n)].=limn→∞(1+γ−α−β)n2+γn−αβn(α+n)(β+n)=limn→∞(1+γ−α−β)+γn−αβn(1+αn)(1+βn)=(1+γ−α−β)
If
1+γ−α−β<1, the series is divergent
γ−α−β<0, the series is divergent
If
1+γ−α−β>1, the series is convergent
γ−α−β>0, the series is convergent