1222+12.3222.42x+12.32.5222.42.62x2+....
Here , We have
an=12.32.52.....(2n−1)222.42.62......(2n)2xn−1
limn→∞anan+1=limn→∞(2n+2)2(2n+1)2.1x
limn→∞anan+1=1x
If x<1 , the Series is Convergent
If x>1 , the Series is Divergent
If x=1 ,
limn→∞n(anan+1−1)=limn→∞n(4n+3)(2n+1)2
Therefore , We have to use Another Test .
{n(anan+1−1)}logn=(−n−1)logn(2n+1)2
{n(anan+1−1)}logn=(−n−1)logn(2n+1)2
=−nlogn4n2=−logn4n=0
Hence , Given Series is Divergent