Let Tn be the general term of the given series
Tn=(a+nx)nn!Tn+1=(a+(n+1)x)n+1(n+1)!
Applying ratio test
limn→∞Tn+1Tn=limn→∞(a+(n+1)x)n+1(a+nx)nn!(n+1)!limn→∞nn+1nn(x+(x+a/n))n+1(x+a/n)nn(1+1n)=xn+1xn=x
If x>1, the series is divergent
If x<1, the series if convergent
For x=1, the ratio test fails
We apply Raabe's test
limn→∞n[TnTn+1−1]=limn→∞n[(a+n)n(n+1)(a+(n+1))n+1−1]=limn→∞n[(a+n)n(n+1)−(a+(n+1))n+1(a+(n+1))n+1]=limn→∞n[nn+1[(an+1)n(1+1n)−[an+(1+1n)]]n+1][nn+1[an+(1+1n)]n+1]=limn→∞n(ea−ea+1)ea+1=∞>1
The series is convergent for x=1