Let Tn be the general term of the series
Tn=xn+1[log(n+1)]qTn+1=xn+2[log(n+1)+1]q
Applying ratio test
limn→∞Tn+1Tn=limn→∞xn+2[log(n+1)+1]qxn+1[log(n+1)]q=limn→∞x⎡⎢
⎢
⎢
⎢⎣(n+1)−(n+1)22+(n+1)33−...(−1)k+1(n+1)kkn−n22+n33−n44+....(−1)k+1nkk⎤⎥
⎥
⎥
⎥⎦q=limn→∞x(n+1)kqnkq=limn→∞x(1+1n)kq=x
For x>1, the series is divergent
For x<1, the series is convergent
For x=1, the ratio test fails
We apply raabe's test
limn→∞n[TnTn+1−1]=limn→∞n[[log(n+1)]q[log(n+2)]q−1]=limn→∞n[log(n+1)]q−[log(n+2)]q[log(n+2)]q=limn→∞n[(n−n22+....(−1)k+1nkk)q−((n+1)−(n+1)22+...(−1)k+1(n+1)kk)q][(n+1)−(n+1)22+...(−1)k+1(n+1)kk]q=limn→∞n[nkq−(n+1)kq](n+1)kq=limn→∞−(kq)nkq+1nkq=−kq
If −kq>1⇒k>−1q, the series is convergent
If −kq<1⇒k<−1q, the series is divergent
(k= positive integer)