To find whether the following series is convergent or divergentGiven series is
1+x2+x25+x310+......+xnn2+1+....
an=xnn2+1
According to Ratio test
If there exists an N so that n≥N
If L<1, then the series converges
If L>1, then the series diverges
If L=1, then the Ratio test is inconclusive
where, L=limn→∞∣∣∣an+1an∣∣∣
On applying ratio test, we get
L=limn→∞∣∣∣an+1an∣∣∣
⇒L=limn→∞∣∣
∣
∣
∣
∣∣xn+1(n+1)2+1xnn2+1∣∣
∣
∣
∣
∣∣
⇒L=limn→∞∣∣∣x(n2+1)(n+1)2+1∣∣∣
⇒L=limn→∞∣∣∣x(n2+1)n2+2n+2∣∣∣
⇒L=limn→∞∣∣
∣
∣∣x(1+1n2)1+2n+2n2∣∣
∣
∣∣
On applying limit, we have
⇒L=|x|
For convergence, L<1
i.e. |x|<1
i.e. −1≤x≤1
Therefore, given series converges for −1≤x≤1
And diverges for x>1