Find whether the following series is convergent or divergent
Given series is
2x+3x28+4x327+.......+(n+1)xnn3+....
Also, an=(n+1)xnn3
According to Ratio test
If there exists an N so that n≥N
If L<1, then the series converges
If L>1, then the series diverges
If L=1, then the Ratio test is inconclusive
where L=limn→∞∣∣∣an+1an∣∣∣
On applying Ratio test, we get
limn→∞∣∣∣an+1an∣∣∣=limn→∞∣∣
∣
∣
∣
∣∣(n+2)xn+1(n+1)3(n+1)xnn3∣∣
∣
∣
∣
∣∣
⇒L=limn→∞∣∣∣n3(n+2)xn+1(n+1)4xn∣∣∣
On applying limit, we have
L=limn→∞∣∣∣n3(n+2)x(n+1)4∣∣∣
⇒L=|x|
For convergence
L<1
i.e. |x|<1
i.e. −1≤x≤1
Therefore, given series converges for −1≤x≤1 and diverges for x>1.