Find (x+1)6+(x−1)6. Hence, or otherwise evaluate (√2+1)6+(√2−1)6.
We have,
(x+1)6+(x−1)6
[6C0x6+6C1x5+6C2x4+6C3x3+6C3x3+6C4x2+6C5x1+6C5x1+6C6x0]+[6C0x6(−1)0+6C1x5(−1)1+6C2x4(−1)2+6C3x3(−1)3+6C4x2(−1)4+6C5x1(−1)5+6C6x0(−1)6]
[6C0x6+6C1x5+6C2x4+6C3x3+6C4x2+6C4x2+6C5x+6C6+6C0x6−6C1x5+6C1x5+6C2x4−6C3x3+6C4x2−6C5x+6C6]
=2[6C0x6+6C2x4+6C4x2+6C6]
=2[x6+15x4+15x2=1]
∴(x+1)6+(x−1)6=2[x6+15x4+15x2+1]....(i)
Putting x=√2 in equation (i), we get
(x+1)6+(x−1)6
=2[(√2)6+15(√2)4+15(√2)2+1]
=2[8+60+30+1]=2[99]=198
∴(x+1)6+(x−1)6=198