Find x and y, if [2xxy3y][32]=[169]
[2xxy3y][32]=[169]
[6x+2x3y+6y]=[169]
[8x9y]=[169]
Comparing the two matrices, we get
8x = 16
→x = 2
9y = 9
→y = 1
Find y, if [2xxy3y][32]=[169] ___.
If [2xxy3y][32]=[169], then y = ___.
Find the value of x and y, if [x+yy2xx−y][2−1]=[32]
If x, y and z are variables, verify the cyclic symmetry of the following expressions.
(1) x(y + z) + y(z + x) + z(x + y)
(2) xy(x − y) + yz(y − z) + zx(z − x)
(3) x2y(x + y) + y2z(y + z) + z2x(z + x)
(4) x3(x + y) + y3(y + z) + z3(z + x)
(5) xy2(x − y) + yz2(y − z) + zx2(z − x)