Find x and y, if [2xxy3y][32]=[169].
To find the values of x and y, we will first find the product of the matrices and then, compare the values. [2xxy3y][32]=[169]
⇒[8x9y]=[169]
So,8x=16⇒x=2∣∣∣ 9y=9⇒y=1
If A=[3x01] and B=[9160−y], find x and y when A2=B.
Find the value of x, y and z from the following equations: (i)[43x6]
(ii)[x+225+zxy]=[6258]
(iii)⎡⎢⎣x+y+zx+zy+z⎤⎥⎦=⎡⎢⎣957⎤⎥⎦
Find x and y, if 2[130x]+[y012]=[5618]
[2x+y4x5x−74x] = [77y−13yx+6], then the value of x + y is (a) x = 3, y = 1 (b) x = 2, y = 3 (c) x = 2, y = 4 (d) x = 3, y = 3