Prove the identity [cosec(90∘−θ)−sin(90∘−θ)][cosecθ−sinθ][tanθ+cotθ]=1
Prove that:
(i) sin θ cos (90∘−θ)+sin(90∘−θ)cos θ=1
(ii) sin θcos (90∘−θ)+cos θsin (90∘−θ)=2
(iii) sin θ cos(90∘−θ)cos θsin (90∘−θ)+cos θ sin (90∘−θ)sin θcos (90∘−θ)=1
(iv) cos(90∘−θ)sec(90∘−θ)tan θcosec(90∘−θ)sin(90∘−θ)cot(90∘−θ)+tan(90∘−θ)cot θ=2
(v) cos(90∘−θ)1+sin(90∘−θ)+1+sin(90∘−θ)cos(90∘−θ)=2cosec θ
(vi) sec(90∘−θ)cosec θ−tan(90∘−θ)cot θ+cos225∘+cos265∘3 tan 27∘ tan 63∘=23
(vii) cot θ tan(90∘−θ)−sec(90∘−θ)cosec θ+√3 tan 12∘ tan 60∘ tan 78∘=2
Prove the following:
(i) sin θ sin(90o−θ)−cos θ cos (90o−θ)=0 (ii) cos(90o−θ)sec(90o−θ)tan θcosec(90o)sin(90o−θ)cot(90o−θ)+tan (90o−θ)cot θ=2 (iii) tan (90o−A)cot Acosec2 A−cos2 A=0 (iv) cos(90o−A)sin(90o−A)tan(90o − A)=sin2 A (v) sin(50o+θ)−cos(40o−θ)+tan1o tan 10o tan 20o tan 70o tan 80o tan 89o=1