wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find x from the following equations:

(i)cosec(90+θ)+xcosθcot(90+θ)

=sin(90+θ)

(ii)xcot(90+θ)+tan(90+θ)sinθ+cosec(90+θ)=0

Open in App
Solution

(i)cosec(90+θ)+xcosθcot(90+θ)

=sin(90+θ)

secθ+xcosθx(tanθ)=cosθ

1cosθ+xcosθx(sinθ)cosθ=cosθ

1cosθxsinθ=cosθ

1xsinθcosθcosθ=cosθ

1xsinθcosθ=cos2θ

1cos2θ=xsinθcosθ

sin2θ=xsinθcosθ

sinθ=xcosθ

x=sinθcosθ

=tanθ

Hence x=tanθ

(ii)We have xcot(90+θ)+tan(90+θ)sinθ+cosec(90+θ)=0

x(tanθ)cotθ×sinθ+secθ=0

xtanθcosθsinθ×sinθ+1cosθ=0

xsinθcosθcosθ+1cosθ=0

xsinθcos2θ+1cosθ=0

xsinθ+1cos2θ=0

xsinθ+sin2θ=0

xsinθ=sin2θ

x=sin2θsinθ

x=sinθ


flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon