Find x from the following equations:
(i)cosec(90∘+θ)+xcosθcot(90∘+θ)
=sin(90∘+θ)
(ii)xcot(90∘+θ)+tan(90∘+θ)sinθ+cosec(90∘+θ)=0
(i)cosec(90∘+θ)+xcosθcot(90∘+θ)
=sin(90∘+θ)
⇒secθ+xcosθx(−tanθ)=cosθ
⇒1cosθ+xcosθx(−sinθ)cosθ=cosθ
⇒1cosθ−xsinθ=cosθ
⇒1−xsinθcosθcosθ=cosθ
⇒1−xsinθcosθ=cos2θ
⇒1−cos2θ=xsinθcosθ
⇒sin2θ=xsinθcosθ
⇒sinθ=xcosθ
⇒x=sinθcosθ
=tanθ
Hence x=tanθ
(ii)We have xcot(90∘+θ)+tan(90∘+θ)sinθ+cosec(90∘+θ)=0
⇒x(−tanθ)−cotθ×sinθ+secθ=0
⇒−xtanθ−cosθsinθ×sinθ+1cosθ=0
⇒−xsinθcosθ−cosθ+1cosθ=0
⇒−xsinθ−cos2θ+1cosθ=0
⇒−xsinθ+1−cos2θ=0
⇒−xsinθ+sin2θ=0
⇒xsinθ=sin2θ
⇒x=sin2θsinθ
⇒x=sinθ