The correct option is
A ln(√3−1)+ln2ln2−ln36x+4x=9x
divide by 4x to form (32)x
6x4x+1=9x4x
(32)x+1=(32)2x
((32)x)2−(32)x−1=0
So (32)x=1±√1−4.1(−1)2=1±,√52
For positive solution
(32)x=1+√52
Applying logarithm
xln(32)=ln(1+√52)
lnab=lna−lnb
x=ln(1+√5)−ln2ln3−ln2.