The correct option is C 2
Given, the expression is
x(x+7)=(x2+11x+28)(x+4) ...(i)
Now, Comparing the expression x2+11x+28 with the identity x2+(a+b)x+ab
we note that,
(a+b)=11 and ab=28
So,
(7+4)=11 and (7)(4)=28
Hence,
x2+11x+28
=x2+7x+4x+28
=x(x+7)+4(x+7)
=(x+4)(x+7)
Now, from (i)
x(x+7)=(x2+11x+28)(x+4)
⇒ x(x+7)=(x+4)(x+7)(x+4)
After canceling the common terms, we get x=1.