Find x such that the four points A(4,1,2),B(5, x,6),C(5,1,-1) and D(7,4,0)are coplanar.
Position vector of ¯¯¯¯¯¯¯¯OA=4^i+^j+2^k
Position vector of ¯¯¯¯¯¯¯¯OB=5^i+x^j+6^k
Position vector of ¯¯¯¯¯¯¯¯OC=5^i+^j−^k
Position vector of ¯¯¯¯¯¯¯¯¯OD=7^i+4^j+0^k
¯¯¯¯¯¯¯¯AB=¯¯¯¯¯¯¯¯OB−¯¯¯¯¯¯¯0A=5^i+x^j+6^k−4^i−^j−2^k=^i+(x−1)^j+4^k¯¯¯¯¯¯¯¯¯AD=¯¯¯¯¯¯¯¯OC−¯¯¯¯¯¯¯0A=5^i+^j−^k−4^i−^j−2^k=3^i+3^j−2^k
¯¯¯¯¯¯¯¯¯AD=¯¯¯¯¯¯¯¯¯OD−¯¯¯¯¯¯¯¯OA=7^i+4^j+0^k−4^i−^j−2^k=3^i+3^j−2^k
The above three vectors are coplanar
⇒A¯¯¯¯B.(A¯¯¯¯C×A¯¯¯¯¯D)=0⇒∣∣ ∣∣1x−1410−333−2∣∣ ∣∣=0⇒1(10+9)−(x−1)(−2+9)+4(3−0)=0⇒9−7(x−1)+12=0⇒−7(x−1)=−21⇒x−1=3∴x=4