The correct option is C y=c(1−x2)+√1−x2
(1−x2)dydx+2xy=x(1−x2)12
On rearranging terms, we have,
dydx+2xy(1−x2)=x(1−x2)12
This is in the form of dydx+P(x)y=Q(x) can be solved using integration factor (IF) method
IF=e∫P(x)dx=e∫2x(1−x2)dx
Let (1−x2)=t⇒−2xdx=dt.
Consider IF=e∫2x(1−x2)dx=e∫2x(1−x2)dx=e∫−dtt=1t
Solution of the equation: y⋅(IF)=∫x(1−x2)12⋅(IF) dx+c
y(1−x2)=∫x dx(1−x2)32+c
Consider ∫x dx(1−x2)32=∫−dt2(t)32=1(t)12=1(1−x2)12
∴y=c(1−x2)+(1−x2)12