Fixed amount of an ideal gas contained in a sealed rigid vessel (V=24.6litre) at 1.0 bar is heated reversibly from 27oC to 127oC.
Determine change in Gibb's energy (in Joule) if entropy of gas S=10+102T(J/K).
A
−530 J
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
+530 J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
530 kJ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−530 J The relationship between the Gibbs free energy, enthalpy and entropy is G=H−TS=U+PV−TS dG=dU+PdV+VdP−TdS−SdT w=0,dV=0,dV=dq=TdS Hence, dG=TdS+VdP−TdS−SdT dG=VdP−SdT⇒ΔG=VΔP−∫SdT......(i) VdP=V(P2−P1)......(ii) P2T2=P1T1⇒P2400=1300⇒P2=43×1bar Substitute value of P2 in equation (ii) VdP=24.6(4/3−1)=8.2L−atm=820J......(iii) ∫SdT=2∫T2T1(10+0.01T)dT=10(T2−T1)+0.005(T22−T21) SdT=10(100)+0.005(4002−3002)=1350.....(iv) Substitute (iii) and (iv) in (i) ΔG=820−1350=−530J Hence, the change in Gibbs energy is −530 J.