wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Fnd the real points (x,y) satisfying 3x2+3y24xy+10x+10y+10=0.

Open in App
Solution

Consider the following equation.

3x2+3y24xy+10x10y+10=0

This can be rewritten as,

3y2+(4x10)y+(10+10x+3x2)=0

Notice that this is the quadratic equation of the form ay2+by+c=0.

Using discriminant formula, we have

y=b±b24ac2a

Where, a=3, b=4x10, c=10+10x+3x2

y={(4x10)±(4x10)24×3(10+10x+3x2)}2×3

y={4x+10±(16x2+80x+100)12(10+10x+3x2)}6

y=4x+10±16x2+80x+100120120x36x26

y=4x+10±20x240x206

y=4x+10±25x210x56

Now, consider 5x210x5.

This gives real solutions if and only if,

5x210x50

5(x2+2x+1)=0

(x+1)2=0

x=1


Thus,

5x210x50

where,

x=1

Thus, the equation has real solutions only when x=1 at which the value of y will be,

y=4(1)+10±25(1)210(1)56

y=4+10±25+1056

y=6±206

y=1


Therefore, the real point satisfying 3x2+3y24xy+10x10y+10=0 is x=1 and y=1.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon