Consider the following equation.
3x2+3y2−4xy+10x−10y+10=0
This can be rewritten as,
3y2+(−4x−10)y+(10+10x+3x2)=0
Notice that this is the quadratic equation of the form ay2+by+c=0.
Using discriminant formula, we have
y=−b±√b2−4ac2a
Where, a=3, b=−4x−10, c=10+10x+3x2
y={−(−4x−10)±√(−4x−10)2−4×3(10+10x+3x2)}2×3
y={4x+10±√(16x2+80x+100)−12(10+10x+3x2)}6
y=4x+10±√16x2+80x+100−120−120x−36x26
y=4x+10±√−20x2−40x−206
y=4x+10±2√−5x2−10x−56
Now, consider √−5x2−10x−5.
This gives real solutions if and only if,
−5x2−10x−5≥0
−5(x2+2x+1)=0
(x+1)2=0
x=−1
Thus,
−5x2−10x−5≥0
where,
x=−1
Thus, the equation has real solutions only when x=−1 at which the value of y will be,
y=4(−1)+10±2√−5(−1)2−10(−1)−56
y=−4+10±2√−5+10−56
y=6±2√06
y=1
Therefore, the real point satisfying 3x2+3y2−4xy+10x−10y+10=0 is x=−1 and y=1.