$$x = 1, 2 .... , 11$$ (many one)
and $$f(x)$$ is a polynomial function of degree odd defined from $$R$$ to
$$R$$ which is always onto.
Hence $$f(x)$$ is many one-onto.
(B) $$f(x)\, =\,\displaystyle \frac{5}{(3x\, +\, 4)^{2}}\, >\, 0;\,\ \, x\, \in\, D_{f}$$
(one-one)
$$y\, =\,\displaystyle \frac{2x\, +\, 1}{3x\, +\, 4}$$
$$x\, =\, \displaystyle \frac{1\, -\, 4y}{3y\, -\, 2}$$
$$\Rightarrow\, y\, \neq\, \displaystyle \frac{2}{3}$$
$$\therefore$$ Range of f is $$R\, -\, \left \{ \displaystyle \frac{2}{3}\right \}\, \subset$$ co-domain (into)
Hence $$f(x)$$ is one-one - into
(C) putting $$x = 0$$, $$\pi,\, 2\,\pi$$ .....
we get same value of $$f(x)$$ equal to $$2$$ (many - one)
$$f(x)\, =\, e^{sin\,x}\, +\, \displaystyle \frac{1}{e^{sin\, x}}\, \Rightarrow\, f(x)\, \geq\, 2\, \, x\, \in\, R$$
Range of $$f$$ is $$[2,\, \infty)\, \subset $$ co-domain (into)
Hence $$f(x)$$ is many one into
(D) $$f(x)\, =\, log\, [(x\, +\, 1)^{2}\, +\, 2]$$
at $$x = 0$$ & $$-2$$ we get same value of $$f(x)$$ equal to $$log3$$ (many-one)
$$f(x)\, \leq\, log2\, \\ \,x\, \epsilon\, R$$
Range of f is $$[log^{2},\, \infty)\, \subset$$ co-domain (into)
Hence $$f(x)$$ is many one-into.