A) Let A=⎡⎢⎣2−2−4−1341−2−3⎤⎥⎦
Now, A2=⎡⎢⎣2−2−4−1341−2−3⎤⎥⎦⎡⎢⎣2−2−4−1341−2−3⎤⎥⎦
⇒A2=⎡⎢⎣2−2−4−1341−2−3⎤⎥⎦
⇒A2=A
Hence,A is an idempotent matrix.
B) Let A=⎡⎢⎣−5−8035012−1⎤⎥⎦
A2=⎡⎢⎣−5−8035012−1⎤⎥⎦⎡⎢⎣−5−8035012−1⎤⎥⎦
⇒A2=⎡⎢⎣100010001⎤⎥⎦
⇒A2=I
Hence, A is involutary matrix.
C) Let A=13⎡⎢⎣1−22−212−2−2−1⎤⎥⎦
⇒AT=13⎡⎢⎣1−2−2−21−222−1⎤⎥⎦
Now, ATA=19⎡⎢⎣1−2−2−21−222−1⎤⎥⎦⎡⎢⎣1−22−212−2−2−1⎤⎥⎦
=19⎡⎢⎣900090009⎤⎥⎦
⇒ATA=I
Hence, A is orthogonal matrix
D) Let A=⎡⎢⎣113526−2−1−3⎤⎥⎦
A2=⎡⎢⎣113526−2−1−3⎤⎥⎦⎡⎢⎣113526−2−1−3⎤⎥⎦
⇒A2=⎡⎢⎣000000000⎤⎥⎦
⇒A2=O where O is zero matrix.
Hence, A is a nilpotent matrix of order 2.