A) Given |A|=162 and A is a square matrix of order 3.
Now, det{A3}=133|A| (Because when we divide matrix A by 3, each element of matrix gets divided by 3. So when we take determinant of such matrix , we get 13 common from each row (or column). So, 133 multiplied by |A| )
⇒det{A3}=16227=6
B) Given A2=A
Also (I+A)5=I+λA
⇒5C0+5C1A+5C2A2+5C3A3+5C4A4+5C5A5=I+λA
⇒I+(5+10+10+5+1))A=I+λA
⇒λ=31
⇒2λ+17=9
C) Given A=[4325]
⇒A2=[4325][4325]
⇒A2=[22271831]
Also given A2−xA+yI=O
⇒[22271831]−[4x3x2x5x]+[y00y]=[0000]
⇒[22−4x+y27−3x18−2x31−5x+y]=[0000]
⇒22−4x+y=0;18−2x=0;27−3x=0;31−5x+y=0
Solving these, we get
x=9,y=14
⇒y−x=5