The correct option is D π4
Let I1=∫sin2x0sin−1√t dt,putθ=sin−1√t
⇒t=sin2θ
dt=sin2θdθ
when t=sin2x,θ=x
when t=0,θ=0
I2=∫x0θsin2θdθ
I2=∫cos2x0cos−1√tdt, put y=cos−1√t
⇒t=cos2y
dt=−sin2y dy
when t=cos2x,y=x
t=0, y=π2
∴I2=∫xπ2y(−sin2ydy)=∫π2xysin2ydy=∫π2xθsin2θdθ
∴I1+I2=∫π20θsin2θ dθ=π4