For 0< ϕ < π2, if x=∑∞n=0cos2nϕ, y=∑∞n=0sin2nϕ, z=∑∞n=0cos2n ϕ, then
xyz = xy + z
xyz = x + y + z
x=1+cos2 ϕ+cos4 ϕ+....=1(1−cos2 ϕ)=1sin2 ϕy=1+sin2 ϕ+sin4 ϕ+...=1(1−sin2 ϕ)=1cos2 ϕz=1+cos2 ϕ sin2 ϕ+cos4 ϕ sin4 ϕ+..=1(1−cos2 ϕ sin2 ϕ)
Now xyz=1sin2 ϕ cos2 ϕ(1−cos2 ϕ sin2 ϕ)xy+z=1sin2 ϕ cos2ϕ+11−cos2 ϕ sin2 ϕ=1sin2 ϕ cos2 ϕ(1−cos2 ϕ sin2 ϕ)=xyz
which is given in (b)
Also x + y + z = xyz , which is given in (c).