For 0<ϕ<π/2,
x=∞∑n=0cos2nϕ,y=∞∑n=0sin2nϕ,z=∞∑n=0cos2nϕsin2nϕ, then
Simplifying, we get
x=cosec2θ.
y=sec2θ
Hence
z=11−cos2θ.sin2θ=11−1xy
=xyxy−1
Or
xyz−z=xy
Or
xyz=xy+z.
Now
xy=sec2θ.cosec2θ
=1sin2θ.1cos2θ
=sin2θ+cos2θcos2θ.sin2θ
=1cos2θ+1sin2θ
=x+y.
Hence
xyz=x+y+z.