For 0<θ<π2
∑6m=1cosec (θ+(m−1)π4)cosec (θ+mπ4)=4√2
⇒∑6m=11sin(θ+(m−1)π4)sin(θ+mπ4)=4√2
⇒∑6m=1sinπ4sin(θ+(m−1)π4)sin(θ+mπ4)=4
⇒∑6m=1sin[θ+mπ4−(θ+(m−1)π4)]sin(θ+(m−1)π4)sin(θ+mπ4)=4
⇒∑6m=1sin(θ+mπ4)cos(θ+(m−1)π4)−cos(θ+mπ4)sin(θ+(m−1)π4)sin(θ+(m−1)π4)sin(θ+mπ4)=4
⇒∑6m=1cos(θ+(m−1)π4)sin(θ+(m−1)π4)−cos(θ+mπ4)sin(θ+mπ4)=4
⇒∑6m=1[cot(θ+(m−1)π4)−cot(θ+mπ4)]=4
Put the value of m
⇒cot(θ)−cot(θ+π4)+cot(θ+π4)
−cot(θ+2π4)+...+cot(θ+5π4)−cot(θ+6π4)=4
⇒cotθ−cot(3π2+θ)=4
⇒cotθ+tanθ=4
⇒tan2θ−4tanθ+1=0
⇒(tanθ−2)2−3=0
⇒(tanθ−2+√3)(tanθ−2−√3)=0
⇒tanθ=2−√3 or tanθ=2+√3
⇒θ=π12;θ=5π12
∵θ∈(0,θ2)
Hence the correct answer are Option c and Option d.