No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinx2sinx1>lnx2lnx1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sinx2sinx1<lnx2lnx1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinx2sinx1≤lnx2lnx1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsinx2sinx1>lnx2lnx1 Let f(x)=lnxsinx ⇒f′(x)=sinx−xlnx⋅cosxxsin2x>0 for 0<x<1(∵lnx<0,sinx,cosx>0)
So, f(x) is increasing. ⇒ for x1<x2: ⇒lnx1sinx1<lnx2sinx2 ⇒sinx2sinx1>lnx2lnx1(∵lnx<0,0<x<1)