The correct option is D (adj M)(adj N)=adj(MN) for all invertible matrices M and N
(NTMN)T=NTMTN
If M is symmetric, then (NTMN)T=NTMN
So, NTMN is also symmetric.
If M is skew symmetric, then (NTMN)T=NT(−M)N=−NTMN
So, NTMN is also skew symmetric.
If M and N are symmetric matrices, then
MT=M and NT=N
(MN−NM)T
=(MN)T−(NM)T
=NTMT−MTNT
=NM−MN
=−(MN−NM)
So, MN−NM is skew symmetric.
If M and N are symmetric matrices, then
MT=M and NT=N
(MN)T=NTMT=NM≠MN
So, MN is not symmetric.
(adj M)(adj N)=adj(NM)≠adj(MN)