For a>0, let the curves C1:y2=ax and C2:x2=ay intersect at origin O and a point P. Let the line x=b (0<b<a) intersects the chord OP and the x-axis at points Q and R, respectively. If the line x=b bisects the area bounded by the curves, C1 and C2, and the area of ΔOQR=12, then 'a' satisfies the equation: