The correct option is B 2
given that d2ydx2=6x−4
by integrating dydx=3x2−4x+a
Since, x=1 is a point of local minimum, so dydx at x=1
⇒0=3−4+a ⇒a=1
dydx=3x2−4x+1
by integrating above equation y=x3−2x2+x+b
at x=1 local minimum value of f is 5
y(1)=5
⇒5=1−2+1+b ⇒b=5
for local max. & min. dydx=0
3x2−4x+1=0 ⇒x=13,1
at x=13, d2ydx2=2−4=−2<0
Therefore, x=13 is a point of local maximum.
thus y(13)=(13)3−2(13)2+(13)+5=13927
now y(0)=5, y(13)=13927, y(1)=5 & y(2)=7
Therefore, global max.=M=7
and global min.=m=5
thus M−m=2
Ans: B