For a certain value of C, the limx→+∞(x4+5x3+3)c−x is finite and non-zero quantity L. Find (L−14)
Open in App
Solution
L=limx→∞(x4+5x3+3)c−x =limx→∞x4c[(1+5x+3x4)c−1x4c−1] =limx→∞[(1+5x+3x4)c−1x4c−1]1x4c Let us consider c=14 because it can be any value except 0 4c−1=0 c=14 To make it simple limx→∞⎡⎣(1+5x+3x4)14−1⎤⎦1/x Using 'L' hospital Rule L=limx→∞(14)(1+5x+3x4)−34(−5x2−12x5)(−1x2)