wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For a circular coil of radius R and N turns carrying current I, the magnitude of the magnetic field at a point on its axis at a distance x from its centre is given by,

(a) Show that this reduces to the familiar result for field at the centre of the coil.

(b) Consider two parallel co-axial circular coils of equal radius R, and number of turns N, carrying equal currents in the same direction, and separated by a distance R. Show that the field on the axis around the mid-point between the coils is uniform over a distance that is small as compared to R, and is given by,

, approximately.

[Such an arrangement to produce a nearly uniform magnetic field over a small region is known as Helmholtz coils.]

Open in App
Solution

Radius of circular coil = R

Number of turns on the coil = N

Current in the coil = I

Magnetic field at a point on its axis at distance x is given by the relation,

Where,

= Permeability of free space

(a) If the magnetic field at the centre of the coil is considered, then x = 0.

This is the familiar result for magnetic field at the centre of the coil.

(b) Radii of two parallel co-axial circular coils = R

Number of turns on each coil = N

Current in both coils = I

Distance between both the coils = R

Let us consider point Q at distance d from the centre.

Then, one coil is at a distance of from point Q.

Magnetic field at point Q is given as:

Also, the other coil is at a distance of from point Q.

Magnetic field due to this coil is given as:

Total magnetic field,

Hence, it is proved that the field on the axis around the mid-point between the coils is uniform.


flag
Suggest Corrections
thumbs-up
3
similar_icon
Similar questions
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Ampere's Law
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon