The given reaction is
Kf
A⇌B
Kb
Initial concentration of A=[A]0 & B=0
Concentration at equilibrium are [A]eq & [B]eq respectively.
Now,
Rate=d[A]dt=Kf[A]−Kb[B] −(i)
At, t=0,[B]=0
⇒[B]=[A]0−[A] −(ii)
Using (ii) in (i):-
∴ d[A]dt=Kf([A])−Kb([A]0−[A])
d[A]dt=(Kf+Kb)[A]−Kb[A]0 −(iii)
At equilibrium, d[A]dt=0 & [A]=[A]eq
⇒(Kf+Kb)[A]eq−Kb[A]0=0
⇒[A]eq=KbKf+Kb[A]0 −(iv)
Now, from eqn(i), at equilibrium, we have:-
Kf[A]eq−Kb[B]eq=0
⇒[B]eq=KfKb[A]eq
⇒[B]eq=Keq[A]eq −(v) (∵Keq=KfKb)
Now, Integrating eqn(iii) after substituting [A]eq from (iv):-
⇒[A]=[A]eq+C1e−(Kf+Kb)t −(vi)
;C is integration constant
At, t=0,[A]=[A]0
⇒[A]=[A]eq+([A]0−[A]eq)e−(Kf+Kb)t −(vii)
Now, when [B]=[B]eq/2 (From (ii)) - (viii)
Putting (viii) in (vii):-
∴ [A]0−[B]eq2=[A]eq+([A]0−[A]eq)e−(Kf+Kb)t
⇒e−(Kb+Kf)t=2[A]0−[B]eq−2[A]eq2([A]0−[A]eq)
Taking natural log on both sides:-
⇒−(Kf+Kb)t=ln(2[A]0−[B]eq−2[A]eq2([A]0−[A]eq))
⇒t=−1(Kf+Kb)ln(2[A]0−[B]eq−2[A]eq2([A]0−[A]eq))