For a fixed positive integer n, if D=∣∣
∣
∣∣n!(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!∣∣
∣
∣∣ then show
[D(n!)3−4] is divisible by n.
Open in App
Solution
D=∣∣
∣
∣∣n!(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!∣∣
∣
∣∣ Taking (n!),(n+1)! and (n+2)! common from C1,C2 and C3, we get D=(n!)(n+1)!(n+2)!∣∣
∣
∣∣111n+1(n+2)(n+3)(n+2)(n+1)(n+3)(n+2)(n+4)(n+3)∣∣
∣
∣∣ Applying C2→C2−C1,C3→C3−C2 D=(n!)(n+1)!(n+2)!∣∣
∣∣100n+112(n+2)(n+1)2(n+2)2(n+5)∣∣
∣∣=(n!)(n+1)!(n+2)!(2n+2) Hence [D(n!)3−4]=[(n!)(n+1)!(n+2)!(2n+2)(n!)3−4]=[(n+1)(n+1)(n+2)(2n+2)1−4]=(2(n4+5n3+9n2+7n+2)−4)=2(n4+5n3+9n2+7n)