Perpendicular distance from (2,3) to the line 3x+4y−5=0 is
|3×2+4×3−5|√32+42=135
1+sin2θ< Perpendicular distance from (2,3) to the line 3x+4y−5=0
∴n1=0
Perpendicular distance from (1,3) to the line 3x+4y−5=0 is
|3×1+4×3−5|√32+42=2
Now, sec2θ+2 cosec2θ
=3+tan2θ+2cot2θ
≥3+2√2 (Using AM > GM)
sec2θ+2 cosec2θ> Perpendicular distance from (1,3) to the line 3x+4y−5=0
∴n2=2