For a function f,f(a+b−x)=f(x), and ∫baxf(x)dx=k∫baf(x)dx, then value of k is
A
12(a+b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12(a−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(a2+b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12(a2−b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12(a+b) Using ∫bag(x)dx=∫bag(a+b−x)dx ∴∫baxf(x)dx=∫ba(a+b−x)f(a+b−x)dx=∫ba(a+b−x)f(x)dx=∫ba(a+b)f(x)dx−∫xf(x)dx⇒2∫baxf(x)dx=(a+b)∫baf(x)dx ⇒∫baxf(x)dx=(a+b)2∫baf(x)dx