wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For AR, then prove that
i) sinAsin(60+A)sin(60A)=14sin3A
ii) cosA.cos(60+A).cos(60A)=14cos3A
iii) sin20o.sin40o.sin60o.sin80o=316
iv) cosπ9.cos2π9.cos3π9.cos4π9=116

Open in App
Solution

i)

sinAsin(60+A)sin(60A)

=sinA[sin260sin2A]

=sinA[34sin2A]

=34sinAsin3A

=34sinA[34sinA14sin3A]

=14sin3A

iii)

sin20sin40sin60sin80

=32[sin20sin(6020)sin(60+20)]

=32[14sin3(20)]

=32[14sin60]

=32×14×32

=316

ii)

cosAcos(60+A)cos(60A)

=cosA(cosAcos60sinAsin60)(cosAcos60+sinAsin60)

=cosA(cos2Acos260sin2Asin260)

=cosA(14cos2A34sin2A)

=14cosA(cos2A3(1cos2A))

=14cosA(4cos2A3)

=14(4cos3A3cosA)

=14cos3A

iv)

cosπ9cos2π9cos3π9cos4π9

=12cosπ9cos2π9cos4π9

=1214cos3π9

=121412

=116

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon