The correct option is D 11
Given quadratic equation is
x(x+1)+(x+1)(x+2)+...+(x+(n−1))(x+n)=10n
⇒(x2+x2+....+x2)+[(1+3+5)+...+(2n-1)]x+[1.2+2.3+...+(n-1)n]=10n
⇒nx2+n2x+n(n2−1)3−10n=0⇒3x2+3nx+n2−31=0
Let α and β be the roots.
Since, α and β are consecutive:
∴|α−β|=1⇒(α−β)2=1
Again, (α−β)2=(α+β)2−4αβ
⇒1=(−3n3)2−4(n2−313)
⇒1=n2−43(n2−31)⇒3=3n2−4n2+124⇒n2=121⇒n=±11∴n=11[∵n>0]