For a positive integer n, let a(n)=1+12+13+14…+12n−1 then
a(100)<100
a(100)>100
a(200)<100
a(100)=100
a(n)=1+(12+13)+(14+15+16+17)+(18+19+…+115)…+(12n−1+…+12n−1)
⇒a(n)<1+(12+12)+(14+14+14+14)+…
⇒a(n)<1+(n−1)
⇒a(n)<n
⇒a(100)<100