wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For a positive integer n, let a(n)=1+12+13+14+.........+1(2n1) Then

A
a(100)100
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a(100)>100
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a(200)100
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a(200)>100
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A a(100)100
C a(200)>100
We have
a(n)=1+12+13+14+15+....+12n1
=1+(12+13)+(14+15+16+17)+(18+....+115)+...+12n1
=1+(12+1221)+(122+15+16+1231)+(123+...+1241)+...
<1+1+...+1=n
Thus,
a(100)<100
Also,
a(n)=1+12+(13+14)+(15+16+17+18)+...+12n1
=1+12+(121+1+122)+(122+1+123)+...+(12n1+1)
>1+12+24+48+....+2n12n12n
>1+12+24+48+...+2n12n12n
=1+(12+12+12+...+12)12n
=1+n212n=(112n)+n2
Thus,
a>(112200)+2002>100
i.e.,
a(200)>100.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon