Sum of Cosines of Angles in Arithmetic Progression
For a positiv...
Question
For a positive integer n, let fn(θ)=(2cosθ+1)(2cosθ−1)(2cos2θ−1)(2cos(22)θ−1)......(2cos(2n−1)θ−1). Which one of the following hold(s) not good?
A
f2(π/6)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f3(π/8)=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f4(π/32)=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f5(π/128)=1+√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Df5(π/128)=1+√2 f(θ)=(2cosθ+1)(2cosθ−1)(2cos2θ−1)(2cos(22)θ−1)......(2cos(2n−1)θ−1).=(2cosθ+1)+(2cosθ−1)....(2cos2n−1θ+1)Now,fn(θ)=2cos2nθ+1f2(π6)=2cos(4×π6)+1=2cos2π3+1=0f3(π8)=2cos(8×π8)+1=−1f4(π32)=2cos(16×π32)+1=1f5(π128)=2cos(32×π128)+1=1+√2Hence,theoptionDisthecorrectanswer.